
Quicklayer: A Layer-Stack-Oriented Accelerating Middleware for
Fast Deployment in Edge Clouds

Yicheng Feng
Tianjin University
Tianjin, China

Shihao Shen
Tianjin University
Tianjin, China

Cheng Zhang
Tianjin University of Finance

and Economics
Tianjin, China

Xiaofei Wang∗
Tianjin University
Tianjin, China

ABSTRACT
Containers are gaining popularity in edge computing due to their
standardization and low overhead. This trend has brought new
technologies such as container engines and container orchestration
platforms (COPs). However, fast and effective container deployment
remains a challenge, especially at the edge. Prior work, which was
designed for cloud datacenters, is no longer suitable for container
deployment in edge clouds due to bandwidth limitations, fluctuating
network performance, resource constraints, and geo-distributed
organization. These edge features make rapid deployment on the
edge difficult. Additionally, integrating with COPs is crucial for
successful deployment.

We present Quicklayer, a layer-stack-oriented middleware de-
signed to accelerate container deployment in edge clouds. Quick-
layer takes a holistic approach that preserves the stack-of-layers
structure and is backward-compatible. It includes (1) a layer-based
container refactoring solution that optimizes container images
while maintaining the layer structure, (2) a customised Kubernetes
scheduler that is able to be aware of network performance, disk
space, and container layer cache for container placement, and (3)
distributed shared layer-stack caches which are optimized for co-
operative container deployment among edge clouds. Preliminary
results indicate that Quicklayer reduces redundant image size by
up to 3.11× and speeds up the deployment process by up to 1.64×
compared to the current popular container deployment system.

CCS CONCEPTS
• Networks→ Network management; Cloud computing.

KEYWORDS
Container, Fast deployment, Distributed cache, Registry, Kuber-
netes, Scheduling, Edge computing

∗Corresponding Author: Xiaofei Wang (xiaofeiwang@tju.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
APNET 2023, June 29–30, 2023, Hong Kong, China
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0782-7/23/06. . . $15.00
https://doi.org/10.1145/3600061.3600074

ACM Reference Format:
Yicheng Feng, Shihao Shen, Cheng Zhang, and Xiaofei Wang. 2023. Quick-
layer: A Layer-Stack-Oriented Accelerating Middleware for Fast Deploy-
ment in Edge Clouds. In 7th Asia-Pacific Workshop on Networking (APNET
2023), June 29–30, 2023, Hong Kong, China.ACM,NewYork, NY, USA, 7 pages.
https://doi.org/10.1145/3600061.3600074

1 INTRODUCTION
Container engines, such as Docker [2] and containerd [8], have
proven advantages in standardization, user-friendliness, and low
overhead [17, 18]. Compared to virtual machines (VMs), containers
provide lightweight isolation with new DevOps features like incre-
mental updates [31]. Application packaging is simplified by creating
container images that can be uploaded to a registry, such as Docker
hub [3], for storage or sharing. Deployment is also straightforward:
pull images from the registry and start the container process.

Container orchestration platforms (COPs) such as Kubernetes
(K8s) [4], Docker Swarm [5], Apache Mesos (with Marathon) [1],
are developed to manage containers by automating application de-
ployment and coordinating resource allocation between containers.
Container engines and COPs are often used together, for example,
with operators preferring Docker for building and pushing contain-
ers to the registry and K8s for large-scale deployment and upgrades
of containers, such as Amazon EKS[11], Microsoft AKS [13], and
Google GKE [10].

While container technologies were initially designed for cloud
datacenters [6], they are now gaining popularity in edge computing.
Edge clouds use industry-standard hardware to offer containerized
services to end-users organized by COPs [25]. These services benefit
from reduced latency, power consumption, and bandwidth usage,
as they are located closer to users [29].

Fast container deployment 1 is crucial in modern edge computing
environments [17]. Slow deployment can lead to SLA violations,
such as poor responsiveness in serverless computing [26]. Fast
container deployment in edge clouds faces unique challenges. First,
high latency and limited bandwidth can slow down the process of
pulling container images from remote registries [17, 19]. Second,
the variable network performance and geo-distributed nature of
edge clouds make it difficult to place containers effectively, further
slowing down deployment. Finally, limited resources in edge clouds

1We define the container deployment as the process which includes container image
downloading, layers extracting, and container runtime starting.

https://doi.org/10.1145/3600061.3600074
https://doi.org/10.1145/3600061.3600074

APNET 2023, June 29–30, 2023, Hong Kong, China Yicheng Feng, Shihao Shen, Cheng Zhang, and Xiaofei Wang.

make the current cache solutions, which use complete container
images as storage granularity, too expensive.

Previous work has proposed solutions to accelerate container de-
ployment [19, 31, 35]. However, these solutions are not well-suited
for fast deployment in today’s edge clouds. Solutions like FaaS-
Net [31] and Wharf [36] assume good network conditions, while
in reality, upstream links between the edge cloud and the remote
site often have poor bandwidth and high latency [17]. Although
Starlight [17] provides edge-specific solutions, there is still a lack
of consideration for a complete pipeline for container deployment,
including container placement, which can have a significant impact
on rapid deployment in edge clouds.

The stack-of-layers structure is a fundamental design for contain-
ers [17, 27, 32]. In contrast to previous work [18, 26], we contend
that a well-considered application of this structure, such as a com-
prehensive solution, can still support fast container deployment in
edge clouds. Our analysis of 10,000 edge clouds in the wild 2 demon-
strates that there is still significant potential for better utilization of
disk resources in edge clouds and upstream link bandwidth between
nearby edge clouds (§2.3). Driven by these insights, we propose
Quicklayer, a middleware that leverages the layer-stack structure to
accelerate container deployment in edge clouds. Quicklayer offers a
holistic solution around the stack-of-layers structure without mod-
ifying operational and development pipelines. Quicklayer can be
activated through the original K8s CLI command via non-intrusive
integration with K8s. We summarize our contributions as follows:

• We propose Quicklayer, a layer-stack-oriented acceleration
middleware for fast container deployment in edge clouds.
Quicklayer fully exploits the potential of edge clouds and
provides a holistic approach around the layer-stack structure
to accelerate deployment.

• We design a image refactoring solution which is compatible
with all standard container engines and registries. It opti-
mizes images and preserves the convenient stack-of-layers
structure of containers.

• We implement a customized K8s scheduler which extends
the awareness of network performance, disk space, and con-
tainer layer cache to make a suitable container placement
for fast deployment.

• We design a distributed shared layer-stack cache and make
cooperative container deployment among edge clouds to
accelerate deployment.

Our preliminary results in testbed show that Quicklayer can
reduce the redundant size of images by up to 3.11× and speed up
the deployment process by up to 1.64× compared to the current
popular container deployment system.

2 BACKGROUND AND MOTIVATION
2.1 Container and K8s
Container. A container image is a template for creating a con-

tainer, which consists of two main parts: container configuration
metadata and a sequence of layers. Concretely, the container config-
uration metadata is an overview of the entire container, recording
the identity information as well as the layer digest (an SHA256 hash

2 PPIO Edge Cloud (www.ppio.cn) supports for the production dataset.

K8s API Server

File

system

Registry

Docker daemon

Command-Line

Interface

K8s Scheduler
Kubelet

(worker node)

Users Users

K8s workflow

Docker workflow

metadata

...

manife

st.json

6d891c

a..json

resposit

ories

sha256: bb2161f3a10...

sha256: a110e587166...

sha256: 9da01ef986a...

json version layer.tar

layers

(a) common image format

Workflow of K8s and Docker

Container

runc

Scheduling for

container placement

Containerd

Figure 1: The deployment flow of K8s and Docker.

of the layer’s contents) it contains and the parent-child relationship
between layers. Each layer is comprised of files and their associ-
ated metadata. In general, when a container image is pulled from
a registry, it will be launched into the root filesystem by a graph
driver. To start a container instance, a writable layer will be created
and a standard runtime is used to start the container process.

K8s. K8s is now the representative of COPs. Most edge and
cloud platforms use K8s to deploy and maintain their containerized
services instead of directly using a container engine [10, 11, 13].
Currently, K8s uses containerd [8] as the internal container engine
while Docker support has been phased out since K8s v1.20. It indi-
cates that solutions [18, 26] adhered to Docker (e.g., dependent on
Docker Daemon) probably cannot work. Figure 1 shows a different
deployment workflow from using Docker directly. Therefore, solu-
tions that focus only on container engines do not take into account
the full pipeline of COPs, especially container placement, which
has a non-negligible impact on deployment time. For example, edge
clouds with good network performance and cache probably enable
faster container deployment.

2.2 Why Container Image Refactoring?
Container layer-based structure rethinking. The stack-of-
layers design is undoubtedly one of the key features of contain-
ers [17, 27, 32]. It provides a standardized I/O stack granularity
that streamlines container development and minimizes redundancy
across layers and containers by referencing the layer with the same
digest. However, this design also presents a challenge for container
deployment acceleration, as there is significant redundancy across
different digest layers [34]. Docker Hub analysis reveals that over
99.4% of files contain duplicates [33], slowing down container im-
age transfers and placing a strain on bandwidth and storage capac-
ity [17, 18].

Paradoxically, the introduction of a new format or modification
of the container image granularity, such as adopting a file-based
structure for on-demand downloading [22, 26], must carefully con-
sider its impact on the entire deployment and operation pipelines,
as it may introduce new devices and file systems, making backward
compatibility challenging. Furthermore, a more granular deduplica-
tion solution can potentially impose additional overhead in terms
of latency and maintenance [26, 32]. For instance, a simplistic file-
based structure solution can result in up to 98× higher layer pull
latency compared to a deduplication-free registry due to the larger
number of individual file objects [32].

Quicklayer: A Layer-Stack-Oriented Accelerating Middleware for Fast Deployment in Edge Clouds APNET 2023, June 29–30, 2023, Hong Kong, China

01:00 06:00 12:00 18:00 24:00
0

50

40

30

20

10

A
v
e

ra
g

e
 r

e
s
o

u
rc

e

u
ti
liz

a
ti
o

n
 (

%
)

磁盘平均利用率8.13%，带宽平均利用率21.69%

Bandwidth

Disk

3500N
e

tw
o

rk
 s

p
e

e
d

 (
M

b
p

s
)

N
e

tw
o

rk
 d

e
la

y
 (

m
s
)

0

640

480

320

160

0 500 1000 1500 2000 2500 3000
Geographical distance (km)

35000 500 1000 1500 2000 2500 3000

40

280

0240

200

160

120

80

Time (hour)

(a)

(b)

Geo-nearby edge clouds

Geo-remote edge clouds

(c)

Figure 2: Measurements on (a) resource utilization, (b) round-
trip times (RTT), and (c) upstream bandwidths.2

Therefore, Quicklayer aims to find a compromise by proactively
refactoring the entire container image, while preserving the stack-
of-layers structure (§3.2). 3 This approach is backward compatible
with the Open Container Initiative (OCI) image specification [7],
which ensures that no new devices or file systems are introduced,
while improving the efficiency of container deployment by reducing
redundancy.

2.3 Why Layer-stack Cache Sharing?
It is reported that container image download accounts for about
80% of the total container deployment time [30]. Therefore, to
speed up deployment, reducing the download latency is especially
important. One typical approach is to provide better networking,
getting container images from closer to the edge cloud or even
locally cached.

Great potential in edge clouds. Based on our measurement
over 10,000 edge clouds in the wild,2 we found that the average
utilization of the disk and bandwidth resource are 8.13% and 21.69%
(see Figure 2), which remains significant potential for improvement.
Meanwhile, the geo-nearby edge clouds show much better network
performance than the remote. For example, an edge cloud 280km
apart has three times the upstream bandwidth of one 1000km apart,
which is about 480Mbps.

Distributed layer-stack cache sharing. Based on our analysis
of the workload dataset from IBM [16], we have observed that more
than 50% of the total requests are directed towards the top 1% of the
most popular containers, highlighting the significance of caching
in container deployment scenarios from a practical application
standpoint. It is worth noting that, by default, most nodes maintain
a cache of container images after pulling them from the registry.
However, in resource-constrained edge cloud environments, em-
ploying a complete image as the caching granularity proves to be
prohibitively expensive. Therefore, in the context of high reuse of
frequently accessed layers (e.g., base layers like CentOS), partic-
ularly following container refactoring, it is more appropriate to
cache these hotness layers.

3Quicklayer’s deduplication can achieve the same effect as file-based deduplication by
proactively restructuring the container based on redundant file content.

Master node Worker node

Server registry

Refactored
images

④Proxy
④Proxy

K8s API server Containerd

⑤Metadata DB

Kubelet

Components of Quicklayer

Components of standard

②Quicklayer
scheduler

③ Quicklayer agent

① Refactorer

Naïve
images

Lifecycle manager

Cache manager
⑤ Layer
data DB

Orchestration
module

Scheduling
module

Figure 3: The architecture of Quicklayer.

Taking inspiration from this observation, Quicklayer leverages
a shared layer-stack cache (§3.3) and facilitates cooperative deploy-
ment by facilitating layer transfers among geographically proxi-
mate edge clouds. One common concern pertains to the feasibility
of shared layer transfers among edge clouds. Although the pres-
ence of NAT networks makes establishing direct peer-to-peer (P2P)
connections between edge clouds challenging, this issue can be
effectively addressed through the application of TCP/UDP hole-
punching techniques [23, 24]. This approach enables efficient layer
transfers between two edge clouds, ensuring the viability of the
shared layer transfer mechanism.

Customized scheduler. Although K8s can organize geo-nearby
edge clouds into a cluster, it cannot sense layer-stack cache and
network performance in edge clouds when scheduling, leading
to inappropriate container placement. Moreover, optimal manage-
ment of layer-stack caches and collaborative transfers between
geo-nearby edge clouds are also missing. Quicklayer addresses
these issues by implementing a customized scheduler (§3.4).

3 DESIGN
3.1 Design Overview
The architecture of Quicklayer is shown in Figure 3, with three
main roles: the server registry, the master node, and the worker node.
A K8s edge cloud cluster comprises at least one master node and
several worker nodes. The master node is responsible for controlling
the worker nodes and deploying containers for request processing.
We describe the main components of Quicklayer below.

The refactorer 1○ is responsible for periodically evaluating the
redundancy of the registry and determining whether to refactor
container images. When a refactoring event occurs, the metadata
and layers in the standard registry are modified (with a template
copy created to prevent service disruption). The refactorer also
synchronizes the latest container metadata to the edge cloud and
cleans invalid cache.

The Quicklayer scheduler 2○ consists of a scheduling module
and an orchestration module. The scheduling module makes the
placement decision for deployment events by considering various
metrics and notifies the orchestration module of the scheduling re-
sult. The orchestration module provides a cooperative deployment
solution, and the proxy 4○ sends the deployment manifest (tasks

APNET 2023, June 29–30, 2023, Hong Kong, China Yicheng Feng, Shihao Shen, Cheng Zhang, and Xiaofei Wang.

2. Refactor image layers

Image 1

Image 2 Image 3

1. Find redundant files

Unique layer

Shared layer

/unique_dir

/shared_dir

/etc

/etc
/etc

/lib /bin

/go1.20.2

/go1.20.2

/…

/systemd

/x86_64-linux-gnu /…

Each formed as

a shared layer

Formed as a

unique layer

Refactor directory view

Image 1 Image 2

Image 3

symbolic

links

Figure 4: Overview of container image refactoring.

for each node generated by the orchestration module) to the edge
clouds.

The Quicklayer agent 3○ focuses on two main tasks. The lifecy-
cle manager, a built-in module, asynchronously restores incoming
distributed image layers to regroup them into a complete container
image at the binding node and initiates the loading step. Once the
filesystem loading process is complete, blocked K8s deployment
instructions will resume, and the container will start. The cache
manager, another module, dynamically optimizes the layer-stack
cache using a cache replacement algorithm.

A proxy 4○ is not a simple bridge but is responsible for syn-
chronizing cache distribution from worker nodes to master nodes. It
opens an HTTP connection, fetches and sends layer data or meta-
data based on the deployment manifest from the database, and
downloads and decompresses the file to the appropriate directory.

Two DBs (metadata DB and layer data DB) 5○ cache the metadata
and layer data of the container images. They are stored separately
based on the nodes’ identity, and copies of caches are transferred
to the designated edge cloud when needed or create hard links to
avoid multiple writes to the underlying filesystem.

3.2 Container Image Refactoring
Quicklayer designs an effective refactoring solution that removes
the redundancy at the file level while maintaining the structure
at the layer level. Note that the refactoring solution follows the
OCI image specification [7], therefore, it is applicable to any image
format conforming to the OCI specification.

Refactoring preparation. The refactorer component in the
registry server performs periodic detection of image redundancy
based on container configurationmetadata, encompassing three key
steps: (1) retrieving path, name, size, and SHA256 hash value of each
file; (2) iterating through the metadata and constructing a mapping
table that indexes image IDs, enabling multiple image IDs to be
associated with the metadata of common files; and (3) calculating
the current redundant file size for each image using the index
table. To enhance user convenience, a user-friendly event trigger is
provided in the form of a constant threshold value for redundancy
size. When the image redundancy size within the registry server
surpasses the threshold, the refactorer initiates image refactoring
operations.

Image refactoring. Figure 4 depicts a comprehensive dia-
gram of the refactoring process. Initially, redundant files identi-
fied through the preparatory refactoring stage are relocated to a
shared directory, leveraging the mapping table. Subsequently, the
files within each refactored image are divided into two segments:

a unique portion and a shared portion. To preserve the original
file calling relationships, symbolic links are generated for the files
moved to the shared directory. Finally, the hash value of the contents
is used to calculate the digest of each unique and shared directory.
Quicklayer reconstructs and organizes layer data and metadata to
form a complete image. To prevent excessive layer division, only
redundant files exceeding a user-defined threshold (on-demand) are
moved to the shared directory. The resulting refactored image can
seamlessly function with container engines, standard repositories,
and remains transparent to users.

Complexity analyse. The refactoring algorithm has a com-
plexity of O(n). It involves iterating through n files to build the
mapping table and iterating through the mapping table to refactor
the layer structure.

3.3 Distributed Shared Layer-stack Cache
Quicklayer uses a layer as the cache granularity instead of the
image to optimize cache efficiency. This is because edge clouds have
limited resources, and the stack-of-layers structure is the standard
structure of container images in the container I/O stack. Moreover,
organizing the cache in layers reduces redundancy, especially after
container image refactoring. Quicklayer organizes the layer-stack
cache in the edge cloud using a directory tree structure. Users can
set the caching space size while initiating the custom scheduler by
applying K8s scheduler’s YAML configuration.

Cache optimization. To optimize cache hit ratios, Quick-
layer uses the Adaptive Replacement Cache (ARC) replacement
policy [28], which keeps track of both the recently and frequently
used layers and adapts to changing access patterns. In the early
stages, the cache space in each edge cloud gradually fills up with
image layers pulled from the registry. Once the cache space is full,
frequently and recently used layers are prioritized as caches, and
some of the used layers are replaced to free up space. This approach
differs from the K8s default cache policy (i.e., garbage-collection [9]).
When a local deployment event occurs, the caches are symbolic
linked to a temporary folder for container restoring and loading.
To ensure adequate fault tolerance, the replacement of the involved
caches is deferred until the container images have finished loading.

3.4 Customized K8s Scheduler
As shown in Figure 5, we follow the open source best practices [21]
to implement the customized K8s scheduler.

Scheduling module. Through the native CLI command of K8s,
users can initiate container deployment events, which are then pro-
cessed by various components within the K8s ecosystem. The K8s
API Server communicates the deployment event to the customized
scheduler, which performs scheduling based on a multi-step process
consisting of sorting, filtering, scoring, and binding. This process is
executed by a set of plugins, and the node with the highest score is
selected for container deployment. 4 In the context of Quicklayer,
the scheduling module maintains the multi-staged design while
enhancing and extending several plugins, as outlined in Table 1.

4 In K8s, the scheduling process revolves around the pod object, which can comprise
multiple containers. For the purpose of clarity and simplicity, we will refer to these
pods as "containers" throughout this paper.

Quicklayer: A Layer-Stack-Oriented Accelerating Middleware for Fast Deployment in Edge Clouds APNET 2023, June 29–30, 2023, Hong Kong, China

Scheduling

module

Users

Orchestration

module

kubectl apply

service.yaml

Generate

Bandwidth

RTT

Binding node

Trans
layers

Customized scheduler
Geo-nearby

edge clouds

Notify

Issue

deploy

-ment

Notify

ScoreFilter

Muti-staged

scheduling

The binding

edge cloud

Pull

layersDeploy

-ment

manifest

Pull

metadata

Registry

Sort Bind

Figure 5: The workflow of customized K8s scheduler.

Table 1: Extra and modified plugins in scheduler.

Plugin Kind Weight Stage
Network performance Extend 1 Filtering & Scoring

Layer locality Extend 1 Scoring
Resources balanced allocation Modify 1 Scoring

Least requested priority Modify 1 Filtering & Scoring

The Network Performance plugin calculates the node’s network per-
formance score by considering upstream bandwidth and round trip
time, which are measured by a dedicated measurement pod. Given
the resource constraints of edge nodes, disk over-occupation can
significantly impact node stability. Therefore, we have integrated
the ephemeral storage metric into the Resources Balanced Allocation
and Least Requested Priority plugins. Furthermore, we have replaced
the Image Locality plugin with a more granular plugin called Layer
Locality, which extends the awareness of layer caching. To mitigate
node heating issues [12], we compute the Layer locality score as
follows:

LayerLocality = cacheHitScore · spread + cacheFreeScore.

The cacheFreeScore and spread factor are employed to prevent con-
centrated deployment events on the same node. Once the scheduling
process is completed, the module provides information regarding
the binding node and the network performance of cluster nodes to
the orchestration module. Simultaneously, the deployment event is
forwarded to the Kubelet of the binding node.

Orchestration module. Upon the occurrence of a deployment
event, the orchestration module initiates a validation process to
determine if the container is cached within the edge cloud cluster,
based on the user-submitted application YAML configuration. To
facilitate a cooperative transfer solution for deployment, the mod-
ule generates a deployment manifest that incorporates (1) metadata
obtained from the metadata DB or retrieved from a remote reg-
istry, and (2) information provided by the scheduling module. This
manifest includes transfer tasks assigned to each edge node, with
a preference given to nodes exhibiting superior network perfor-
mance for layer transfers. For instance, if the binding node "node1"
requires "layer1" to reconstruct the container image, the module in-
structs "node2," an edge cloud within the cluster that caches "layer1"
and possesses a favorable network performance, to transmit the
layer to "node1." In cases where the required "layer1" is unavailable

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Image name (correspond to table below)

0

200

400

600

800

S
iz

e
(M

B
)

Unique layer size before refactoring

Shared layer size before refactoring

Image name 1.python 2.golang 3.openjdk 4.ubuntu 5.memcached

6.httpd 7.mysql 8.mariadb 9.redis 10.postgres 11.rabbitmq

12.registry 13.wordpress 14.ghost 15.node 16.flink 17.cassandra

Unique layer size after refactoring

Shared layer size after refactoring

4000

4500

5000

5500

ALL

S
to

ra
g

e
U

sa
g

e
(M

B
)

All images

Before refactoring
After refactoring

(a)
(b)

Figure 6: Overall storage saving by refactoring (a) and the
comparison of image composition (b).

within the cluster, or if all other node networks are experiencing
suboptimal performance, "node1" is directed to request the layer
from the registry server via the registry REST API. To minimize the
latency introduced by round-trip requests, the deployment mani-
fest is sent by the master node rather than the binding node. For
practical considerations, the concurrent upload connection setting
is limited to three connections.

4 PRELIMINARY EVALUATION
4.1 Experimental Setup
Testbed setup. We conduct our evaluation on a testbed com-

prising two edge cloud clusters, each consisting of one master node
and four worker nodes. Each worker node is equipped with 2 cores
(vCPUs, 2.20GHz Intel Xeon E5-2630) and 4GB RAM, while the mas-
ter node and the registry server are configured with 4 vCPUs and
8GB RAM. We deploy the latest release of Kubernetes v1.24.10 on
the edge cloud cluster, and Docker Registry 2.0 v2.8.1 is used as the
standard registry on the registry server. To control the bandwidth,
we utilize the Linux Traffic Control (TC) tool [15]. We limit the
bandwidth to 400Mbps within the edge cloud cluster and 100Mbps
between the cluster and the remote registry server, based on our
measurement presented in §2.3.

Containers and workloads. We evaluate Quicklayer using a
set of 17 popular official images totalling 5.96GB from the Docker
Hub [3]. For our experiments, we use a real workload dataset from
IBM [16], where the "timestamp" in the dataset is considered as the
request arrival time, and the "http.request.uri" is considered as the
container type to determine the frequency and type distribution of
container deployment requests.

4.2 Preliminary Results
In Figure 6(a), we compare the total storage size of the 17 container
images in the registry before and after refactoring with Quicklayer.
The results show that Quicklayer effectively reduces the redundant
size of images by up to 3.11×, saving 15.5% of storage space. This is
because Quicklayer significantly increases the proportion of shared
layers in a container image (see Figure 6(b)), indicating that more
layers will be reused by other images. It is worth noting that Quick-
layer’s container image refactoring not only reduces image storage
space in the registry but also benefits from a series of deployment

APNET 2023, June 29–30, 2023, Hong Kong, China Yicheng Feng, Shihao Shen, Cheng Zhang, and Xiaofei Wang.

0 100 200 300 400 500

Cache size (MB)

0.5

0.6

0.7

0.8

0.9

1.0

N
o

rm
a

li
ze

d
 d

ep
lo

y
m

en
t

ti
m

e

K8s-native

Quicklayer

Figure 7: Container deployment time comparison under dif-
ferent cache size.

processes, such as download and load, while retaining the container
key design of the stack-of-layers structure.

To evaluate the acceleration of Quicklayer on container deploy-
ments, we set the same cache size for the baseline, which uses the
current popular container deployment system, K8s. As shown in
Figure 7, Quicklayer performs well at multiple cache size settings,
even when it is set to 0MB. This is due to the more lightweight
deployment process supported by Quicklayer’s container image
refactoring, a more suitable container placement selected by Quick-
layer’s customized K8s scheduler, and a shared layer cache that
makes deployment cooperative among the 4 geo-nearby edge clouds
organized in a K8s cluster. Quicklayer speeds up the container de-
ployment process by up to 1.64× compared to the baseline with
500MB cache space, and the layer hit ratio is 39.7% higher than the
default lagging image cache.

5 RELATEDWORK
Container registry. DupHunter [32] designs a Docker reg-

istry architecture to deduplicates layers and restore overhead. Li
et al. [27] propose a reconstruction algorithm for Dcoker images
in simulation. Quicklayer also remove redundancy by container
image refacotring, but it’s proven to be compatible with standard
container engines and registries.

On-demand downloading. Slacker [22] utilizes NFS to enable
on-demand downloading of required data. Similarly, DADI [26]
uses on-demand fetching by operating at the block level, which also
needs a tailored image format and registry. Quicklayer preserves
the convenient layer structure through refactoring and follows the
OCI standard.

P2P transmission. Wharf [36] and Shifter [20] propose a client-
side solution to share local image cache. Dragonfly [14] uses the
P2P approach to accelerate deployment or help reduce registry load.
Differently, Quicklayer focuses on edge features, using lightweight
layer-stack caches and applying P2P to geo-nearby edge clouds.

6 DISCUSSION AND FUTUREWORK
Robustness. In the implementation of Quicklayer, we address

several challenges related to distributed storage and message syn-
chronization, drawing inspiration from K8s mechanisms such as
asynchronous processing and level trigger, and utilizing file locks
(using fcntl() interface) and timestamps to ensure cooperative de-
ployment and cache optimization, while also using Linux TC tool to
isolate the bandwidth from major services running in edge clouds.

Update optimization. In this preliminary work, we primarily
discuss the acceleration of container deployment through container
image refactoring. Furthermore, in edge scenarios, frequent config-
uration changes occur more often, and container version updates
are common [17]. This provides significant potential for optimiza-
tion through refactoring, as many of the files remain unchanged
during such updates. In future work, we will explore the benefits
of refactoring for updates.

Pull optimization. In the native containerd implementation,
the extraction of layers is deferred until all layers are downloaded,
and this extraction process is sequential. Currently, despite Quick-
layer significantly accelerating the download of required image
layers, optimization of the extraction phase has been overlooked.
In future work, we will discuss optimization strategies for layer
extraction and analyze the benefits they bring. This will make the
entire set of acceleration and deployment solutions for container
image layers more comprehensive.

7 CONCLUSION
In this preliminary work, we present Quicklayer, a layer-stack-
oriented accelerating middleware for fast container deployment in
edge clouds, which includes: (1) a layer-based container refactoring
solution, (2) a customised K8s scheduler, and (3) distributed shared
layer-stack caches. Preliminary results show that Quicklayer can
reduce the redundant size of images by up to 3.11× and speed up
the deployment process by up to 1.64× compared to the current
popular container deployment system.

ACKNOWLEDGMENTS
We would like to express our gratitude to the reviewers for their
valuable comments, as well as extend our thanks to PPIO Edge
Clouds Co., Ltd., China (www.ppio.cn) for providing the valuable
production dataset. This research has received support from the Na-
tional Science Foundation of China under Grant No. 62072332, the
China NSFC (Youth) through Grant No. 62002260, and the Tianjin
Xinchuang Haihe Lab under Grant No. 22HHXCJC00002.

REFERENCES
[1] 2009. Apache Mesos. https://github.com/apache/mesos.
[2] 2013. Docker. https://www.docker.com/
[3] 2014. DockerHub. https://hub.docker.com/
[4] 2014. Kubernetes. https://github.com/kubernetes/kubernetes
[5] 2014. Swarm mode overview. https://docs.docker.com/engine/swarm/.
[6] 2015. Cloud native computing foundation. https://cncf.io
[7] 2015. OCI. https://github.com/opencontainers
[8] 2019. containd. https://containerd.io/
[9] 2019. Garbagecollection. https://kubernetes.io/docs/concepts/architecture/

garbage-collection/
[10] 2019. GoogleGKE. https://cloud.google.com/kubernetes-engine
[11] 2021. Amazon EKS. https://aws.amazon.com/eks
[12] 2021. Heating problem. https://oracle.github.io/weblogic-kubernetes-operator/

faq/node-heating/
[13] 2022. AKS. https://learn.microsoft.com/en-us/azure/aks/
[14] 2023. Dragonfly. https://d7y.io/docs/
[15] Werner Almesberger. 1998. Linux traffic control-implementation overview. Tech-

nical Report.
[16] Ali Anwar, MohamedMohamed, Vasily Tarasov,Michael Littley, Lukas Rupprecht,

Yue Cheng, Nannan Zhao, Dimitrios Skourtis, Amit S Warke, Heiko Ludwig, et al.
2018. Improving docker registry design based on production workload analysis.
In 16th USENIX Conference on File and Storage Technologies (FAST 18). 265–278.

https://github.com/apache/mesos
https://www.docker.com/
https://hub.docker.com/
https://github.com/kubernetes/kubernetes
https://docs.docker.com/engine/swarm/
https://cncf.io
https://github.com/opencontainers
https://containerd.io/
https://kubernetes.io/docs/concepts/architecture/garbage-collection/
https://kubernetes.io/docs/concepts/architecture/garbage-collection/
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/eks
https://oracle.github.io/weblogic-kubernetes-operator/faq/node-heating/
https://oracle.github.io/weblogic-kubernetes-operator/faq/node-heating/
https://learn.microsoft.com/en-us/azure/aks/
https://d7y.io/docs/

Quicklayer: A Layer-Stack-Oriented Accelerating Middleware for Fast Deployment in Edge Clouds APNET 2023, June 29–30, 2023, Hong Kong, China

[17] Jun Lin Chen, Daniyal Liaqat, Moshe Gabel, and Eyal de Lara. 2022. Starlight:
Fast container provisioning on the edge and over the WAN. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22). 35–50.

[18] Hao Fan, Shengwei Bian, Song Wu, Song Jiang, Shadi Ibrahim, and Hai Jin. 2021.
Gear: Enable Efficient Container Storage and Deployment with a New Image
Format. In 2021 IEEE 41st International Conference on Distributed Computing
Systems (ICDCS). IEEE, 115–125.

[19] Silvery Fu, Radhika Mittal, Lei Zhang, and Sylvia Ratnasamy. 2020. Fast and
Efficient Container Startup at the Edge via Dependency Scheduling.. In HotEdge.

[20] Lisa Gerhardt, Wahid Bhimji, Shane Canon, Markus Fasel, Doug Jacobsen,
Mustafa Mustafa, Jeff Porter, and Vakho Tsulaia. 2017. Shifter: Containers for
hpc. In Journal of physics: Conference series, Vol. 898. IOP Publishing, 082021.

[21] David Haja, Mark Szalay, Balazs Sonkoly, Gergely Pongracz, and Laszlo Toka.
2019. Sharpening kubernetes for the edge. In Proceedings of the ACM SIGCOMM
2019 Conference Posters and Demos. 136–137.

[22] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. 2016. Slacker: Fast distribution with lazy docker containers. In
14th USENIX Conference on File and Storage Technologies FAST 16). 181–195.

[23] Fadia Hasnaoui, Lamia Zohra Mihoubi, Maria Pateraki, and Miloud Bagaa. 2022.
Relay-basedNetworkArchitectures for Collaborative Virtual Reality Applications.
In GLOBECOM 2022-2022 IEEE Global Communications Conference. IEEE, 6146–
6151.

[24] Billy Kihei, Tyler Davison, Mfon Okpok, and Jim Song. 2022. Comparison of V2N
STUN/TURN Round Trip Time Performance on a Public 5G Network. In 2022
IEEE 96th Vehicular Technology Conference (VTC2022-Fall). IEEE, 1–5.

[25] Phu Lai, Qiang He, Guangming Cui, Feifei Chen, Mohamed Abdelrazek, John
Grundy, John Hosking, and Yun Yang. 2020. Quality of experience-aware user
allocation in edge computing systems: A potential game. In 2020 IEEE 40th Inter-
national Conference on Distributed Computing Systems (ICDCS). IEEE, 223–233.

[26] Huiba Li, Yifan Yuan, Rui Du, Kai Ma, Lanzheng Liu, and Windsor Hsu. 2020.
DADI: Block-level image service for agile and elastic application deployment. In
Proceedings of the 2020 USENIX Conference on Usenix Annual Technical Conference.
727–740.

[27] Sisi Li, Ao Zhou, Xiao Ma, Mengwei Xu, and Shangguang Wang. 2022.
Commutativity-guaranteed Docker Image Reconstruction towards Effective

Layer Sharing. In Proceedings of the ACM Web Conference 2022. 3358–3366.
[28] Nimrod Megiddo and Dharmendra S Modha. 2003. ARC: A Self-Tuning, Low

Overhead Replacement Cache.. In Fast, Vol. 3. 115–130.
[29] Blesson Varghese, Eyal De Lara, Aaron Yi Ding, Cheol-Ho Hong, Flavio Bonomi,

Schahram Dustdar, Paul Harvey, Peter Hewkin, Weisong Shi, Mark Thiele, et al.
2021. Revisiting the arguments for edge computing research. IEEE Internet
Computing 25, 5 (2021), 36–42.

[30] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. 2015. Large-scale cluster management at Google with
Borg. In Proceedings of the Tenth European Conference on Computer Systems. 1–17.

[31] Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran Yang, Huiba Li,
Rui Du, and Yue Cheng. 2021. Faasnet: Scalable and fast provisioning of custom
serverless container runtimes at alibaba cloud function compute. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21).

[32] Nannan Zhao, Hadeel Albahar, Subil Abraham, Keren Chen, Vasily Tarasov,
Dimitrios Skourtis, Lukas Rupprecht, Ali Anwar, and Ali R Butt. 2020. Duphunter:
Flexible high-performance deduplication for docker registries. In USENIX Annual
Technical Conference (ATC’20).

[33] Nannan Zhao, Vasily Tarasov, Hadeel Albahar, Ali Anwar, Lukas Rupprecht,
Dimitrios Skourtis, Arnab K Paul, Keren Chen, and Ali R Butt. 2020. Large-scale
analysis of docker images and performance implications for container storage
systems. IEEE Transactions on Parallel and Distributed Systems 32, 4 (2020), 918–
930.

[34] Nannan Zhao, Vasily Tarasov, Hadeel Albahar, Ali Anwar, Lukas Rupprecht,
Dimitrios Skourtis, Amit S Warke, Mohamed Mohamed, and Ali R Butt. 2019.
Large-scale analysis of the docker hub dataset. In 2019 IEEE International Confer-
ence on Cluster Computing (CLUSTER). IEEE, 1–10.

[35] Nannan Zhao, Vasily Tarasov, Ali Anwar, Lukas Rupprecht, Dimitrios Skourtis,
Amit Warke, Mohamed Mohamed, and Ali Butt. 2019. Slimmer: Weight loss
secrets for docker registries. In 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD). IEEE, 517–519.

[36] Chao Zheng, Lukas Rupprecht, Vasily Tarasov, Douglas Thain, Mohamed Mo-
hamed, Dimitrios Skourtis, Amit S Warke, and Dean Hildebrand. 2018. Wharf:
Sharing docker images in a distributed file system. In Proceedings of the ACM
Symposium on Cloud Computing. 174–185.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Container and K8s
	2.2 Why Container Image Refactoring?
	2.3 Why Layer-stack Cache Sharing?

	3 Design
	3.1 Design Overview
	3.2 Container Image Refactoring
	3.3 Distributed Shared Layer-stack Cache
	3.4 Customized K8s Scheduler

	4 Preliminary Evaluation
	4.1 Experimental Setup
	4.2 Preliminary Results

	5 Related Work
	6 Discussion and Future Work
	7 Conclusion
	Acknowledgments
	References

